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Executive summary 

As one of the most promising pathways in the transition period towards the low carbon 

economy, a large scale implementation of electric vehicles (EVs) is expected in the near future. 

Concentration of EVs charging in a small area or within a short time will dramatically affect 

the load, especially the peak load in the distribution network. As a result, distribution 

transformers are facing hazards of shortened lifetime due to extra loads, and direct failures 

caused by potential overloads. Considering the large number of distribution transformers and 

the massive investment involved, the adaptability of the population of distribution transformers 

under future EV scenarios should be assessed.   

In this project, an assessment strategy for the future adaptability of distribution transformer 

population under EV scenarios is introduced. Assessing the adaptability is to assess the hot-

spot temperature, loss-of-life, expected lifetime and failure probability of each individual in 

the distribution transformer population.  

Determination of hot-spot temperature of distribution transformers is essential for the 

assessment. In order to achieve accurate prediction of hot-spot temperatures under EV 

scenarios, thermal parameters should be refined for individual distribution transformers so that 

their thermal characteristics can be reflected more accurately than using the generic values 

recommended for all distribution transformers in the IEC loading guide. Two methods for the 

refinement are proposed in this project. One method is to curve-fit hot-spot temperatures 

measured in the extended heat run test; and the other is to calculate each parameter with 

developed equations in the loading guide with standard heat run test results.   

The assessment strategy is introduced and demonstrated on a group of selected distribution 

transformers from the population under three EV scenarios, i.e. Business as usual (BAU), High-

range and Extreme-range scenarios, which represent 0%, 32% and 58.9% EVs penetration 

levels respectively. Results show that EVs charging would be less concerned on the 

acceleration of thermal ageing and the corresponding increment of loss-of-life and reduced 

lifetime than the direct failure due to bubbling. Since the peak load and hot-spot temperature 

under EV scenarios would be compensated by low values during the off-peak time of a day, 

which eventually leads to a moderate thermal ageing. Occasionally, over-ageing would be 

resulted by overwhelmingly high hot-spot temperatures, and the lifetime would be reduced to 

an unacceptable level. However, on such occasions, hot-spot temperatures would be high 

enough to trigger bubbling and cause direct failure of transformers. Therefore, concerns on the 

short term failure would be prioritised over the reduction of lifetime due to long term thermal 

ageing.   

In terms of the failure probability, results show that no distribution transformers are facing 

failure risks due to bubbling under BAU scenario. Failure starts under High-range scenario. If 

transformers possessing a failure probability over 50% are identified as high risk, then 13% of 

investigated transformers are at high risk under High-range scenario, while it increases to 39% 

under Extreme-range scenario. Although older transformers tend to have higher failure 

probabilities, it is found that the failure probability is dominantly controlled by the peak load, 

other factors such as transformer age and installation conditions are less influential. A threshold 

peak load of around 1.5 p.u. is observed that distinguishes transformers in high risk from others 

under Extreme-range scenario. This observation could be applied to assist the asset 

management under future EV scenario that the peak load of distribution transformers should 

be restricted below 1.5 p.u. to prevent potential failure due to bubbling. 
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1. Introduction 

1.1 Background   

Humanity in the future is threatened by global warming. Therefore, preventing global warming 

has long been recognised as a driving factor of the global transformation into a low carbon 

economy. In Europe, the European Council has set a target of reducing Green House Gas (GHG) 

by 80% to 95% by 2050 compared to 1990, in order to keep the climate change below 2°C [1]. 

To realise this ambitious objective, all sectors of the economy would require radical changes 

to reduce their own GHG emissions.  

Electric vehicles (EVs) are one of the most promising pathways in the transition period towards 

the low carbon economy, since they are playing a key role in decarbonising the transport sector, 

whose overall share of the GHG reduction is anticipated as significant as 21 % by 2050 [2]. 

However, to achieve that share, three in every four vehicles are expected to be replaced by EVs 

[2]. To charge their batteries, EVs need to be connected to the electricity grid, where they are 

equivalent to active loads. As a result, the distribution network will be affected by extra loads 

due to a large scale of implementation of EVs.  

EVs are directly plugged into the distribution network when charging, therefore their impacts 

are immediate. Firstly, the system stability will be disturbed, and the potential issues have been 

widely covered by existing researches [3-9] such as voltage drops, voltage unbalances, network 

losses and current harmonics. Secondly, load levels and load profiles in distribution network 

will be affected, which is more concerned in this project. Generally, the average load level will 

be lifted up. What is worse is EVs charging loads are more mobile and uncertain comparing to 

normal loads due to the randomness of charging behaviours of EV’s users. Clustering, i.e. 

concentration of EVs charging in a small area or within a short time, will dramatically increase 

the load, especially the peak load, of the local distribution network, and potentially overload 

its transformers. Consequently, these transformers are facing shortened lifetime due to extra 

loads and potential failures due to overloads. 

In the UK, distribution transformers generally refer to transformers that step down voltages 

from 11 kV or 6.6 kV to 0.4 kV, and the typical power ratings are ranging from 15 kVA to 

2000 kVA [10] (2500 kVA in IEC 60076-7 [11]). Unlike medium or high voltage power 

transformers, distribution transformers normally do not operate in parallel in low voltage 
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networks. Also, since feeders in the UK are typically configured in a radial fashion, failure of 

one single distribution transformer will lead to the disconnection of the whole area rooted at it. 

For a Distribution Network Operator (DNO), this should be prevented when considering the 

consequent penalties and compensations it has to pay to The Office of Gas and Electricity 

Markets (OFGEM) and customers [12].  

1.2 Statement of problem    

The prevailing of low carbon economy may transform the distribution network and reshape its 

loading scenarios with novel schemes such as EVs. Consequently frequent or excessive 

loadings will challenge the large and old distribution transformer population more than ever 

before by increasing the hot-spot temperature, accelerating ageing, shortening lifetimes and 

even causing direct premature failures. Therefore, in order to minimise customer interruptions 

and maximise the return on investment, it is a necessity to face the challenge first by 

researching how the distribution transformer population will be impacted by future EV 

scenarios. As a status quo, the following facts are urging such a research.  

 Large population of old distribution transformers 

ENW has a population of more than 30,000 distribution transformers. The wide-ranged age 

profile of this population is shown in Figure 1.1. More than 40% transformers are older than 

40 years. According to calculation results that will be shown later in this report, older 

transformers tend to have ageing by-products accumulated inside the transformer such as 

moisture, which will increase the operational risks by lowering the threshold operational 

temperature that triggers direct failure. Therefore, they are more vulnerable to EV scenarios. 

 

Figure 1.1: Age profile of ENW distribution transformer population 
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 Diverse variations of designs  

Transformer design can be significantly distinguished from manufacturer to manufacturer, 

since different manufacturers may apply different materials and techniques to meet the 

specifications. As a result, transformers with different designs will have different responses to 

same loads. Transformers of the ENW population are designed and produced by more than 240 

manufacturers. Figure 1.2 shows compositions of the population in term of manufacturers. 

Only the top 10 manufacturers are specifically labelled, whose transformers count for 65 % of 

the whole population. Therefore, in order to take account of design variations, a design-

dependent approach should be pursued when assessing the population.   

 

Figure 1.2: Manufacturer composition of ENW distribution transformer population 

 Lack of research 

Transformer researches have been focused on high voltage power transformers due to their 

capital-concentrated nature and potential severe post-failure consequences. However, 

condition monitoring tools and asset management strategies developed for power transformers 

may not be feasible for a direct transplant onto distribution transformers. 

Comparing to high voltage power transformers, distribution transformers are smaller, lighter 

and manufactured much quicker. They are likely made in different factories, and vapour-phase 

drying equipment is not generally available [10]. Therefore, the moisture content in paper 

insulation of a new distribution transformer is normally around 1% while it is 0.5% for power 

transformers. Also, unlike power transformers, most distribution transformers do not equip the 

oil conservator and breather, which aim to mitigate moisture ingression from atmosphere to 

transformer oil and paper. Therefore distribution transformers tend to have relatively higher 
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initial levels and faster accumulation of moisture in paper, which potentially increase failure 

risks due to breakdown caused by bubbling under high hot-spot temperature induced by high 

loads. 

 Lack of data 

Unlike high voltage power transformers that are closely monitored, distribution transformers 

are more likely to be “fit and forgotten”. This is partly due to the inexpensive capital investment 

and short replacement time; but more importantly it is because past operating experiences have 

indicated that distribution transformers would work well under current loading conditions since 

their lifespans are always exceeding the originally expected lifetimes.  

However, as aforementioned, under future loading scenarios when low carbon technologies 

such as EVs are widely implemented, distribution transformers would have to face 

unprecedented challenges. Under such circumstances, the convention of “fit and forgotten” 

would consequently result in an embarrassing situation that no data could be found for the 

research aiming to understand the challenges and to generate solutions. Therefore, alternative 

approaches such as modelling should be developed to approximate the necessary data for the 

research with a reasonable accuracy.  

To summarise, the distribution transformer population is concerned under future EV scenarios 

on hazards of reduced lifetime due to the extra loads brought by EVs charging and on hazards 

of immediate failure caused by breakdown due to bubbling when the hot-spot temperature 

exceeds the bubbling inception temperature. Therefore, in order to protect the investment and 

maintain the distribution transformer population in a safe and reliable state, an assessment 

strategy must be produced for the adaptability under future EV scenarios. 

1.3 Objective and methodology of research 

This work aims to assess the adaptability of the distribution transformer population of ENW in 

future EV scenarios. The main objectives are as follows: 

1. Define EV scenarios based on projection of EVs penetration in the future, and model 

EVs charging load in a stochastic manner to reflect the realistic behaviours of EV’s 

users.  
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2. Refine thermal parameters for individual transformers to reflect their differences in 

thermal characteristics based on IEC 60076-7 thermal model. Calculate hot-spot 

temperature, resulting loss-of-life and lifetime for individual transformers with refined 

thermal parameters under EV scenarios.  

3. Model cyclic load and ambient profiles of individual transformers assuming the 

measured data are not available.   

4. Estimate bubbling inception temperature of individual transformers based on their 

moisture content levels in paper.  

5. Estimate failure probabilities of individual transformers if failure occurs due to 

bubbling once the hot-spot temperature exceeds the bubbling inception temperature.  

6. Assess the population in terms of the hot-spot temperature, the resulting loss-of-life and 

expected lifetime, and failure probabilities under EV scenarios.   

Methodologies serving each objective are briefly summarised in Table 1-1. 

Table 1-1: Methodologies serving objectives of this project 

Background Objective Methodologies 

Future loading 

scenarios  

1. EV scenarios and charging 

load 
 Stochastic modelling based on existing 

literature. 

Diverse variation 

of designs 

2. (a) Refinement of thermal 

parameters 

 Least Square Estimation fitting with 

measured hot-spot temperature during 

extended heat run test. 

 Calculate each parameter based on 

extended heat run test results. 

2. (b) Calculate of hot-spot 

temperature, loss-of-life and 

lifetime. 

 IEC 60076-7 thermal model. 

 IEC ageing model. 

Lack of data 

3. (a) Cyclic load modelling 
 Modelling based on customer information 

according to Elexon profiles. 

3. (b) Ambient temperature 

modelling 

 Modelling based on yearly weighted 

ambient model provided in IEC loading 

guide. 

 Historical data of the region from Met 

Office. 

Lack of research 

4. Bubbling inception 

temperature 

 Bubbling inception temperature model 

from literature. 

 Modelling between moisture in paper and 

transformer age based on scenario analysis.  

5. Failure probability  Monte-Carlo simulation. 

Aim of project 6. Population assessment 

 Statistical analysis. 

 Results demonstration with a representative 

group.  
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2. Strategy assessment strategy for adaptability of distribution 

transformers under EV scenarios   

2.1 Introduction to assessment strategy 

In order to assess the adaptability of distribution transformer population, a systematic strategy 

is proposed in this work. A diagram summarising the strategy is shown in Figure 2.1.   

 

Figure 2.1: Detailed diagram of assessment strategy      

The strategy mainly contains two parts, i.e. thermal modelling and thermal failure modelling. 

Thermal modelling is for the estimation of hot-spot temperatures of individual distribution 

transformers, which are essential for the calculation of the loss-of-life and lifetime. Hot-spot 

temperatures are estimated by IEC thermal model, which requires three elements as inputs. The 

first element is the thermal characteristics element, which indicates the thermal parameters. 

Ideally, thermal parameters should be refined for individual transformers to reflect the design-

dependent thermal characteristics of different transformers. Two methods are proposed in this 

work to refine thermal parameters. Curve-fitting the measured hot-spot and top-oil 
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temperatures during the extended heat run test is the preferred method since it leads to the most 

accurate refinement. The other method is to calculate each parameter with data from standard 

heat run tests.  

The second element is the load element, which will be the total load of the current load plus 

potential EVs charging load under future EV scenarios. The current load refers to day to day 

load cycles that distribution transformers are carrying. Measurements would be always 

preferred if available. Otherwise, Elexon profiles could be used to generate distribution 

transformer load profiles with information of numbers and types of its customers. As to EVs 

charging load, considering the random charging behaviours of EVs owners, probabilistic 

modelling is implemented in order to simulate the randomness of charging power, charging 

duration and charging start time of individual EVs.  

The last element is the environment element, which refers to the ambient temperature and the 

indoor/outdoor installation of distribution transformers. A yearly weighted average ambient 

temperature is allowed by IEC loading guide when calculating the hot-spot temperature and 

loss-of-life with IEC thermal model. It can be derived based on historical ambient data and 

used for distribution transformers that do not have measured ambient temperatures. 

Additionally, the enclosure affects distribution transformers in two folds. Firstly, it causes extra 

temperature rises on the ambient and top-oil rise. Secondly, it protects transformers from 

rainfall or other precipitation weathers so that the moisture accumulation in indoor transformers 

tends to be slower than in outdoor ones according to the calculation in this work. Consequently, 

indoor transformers tend to experience higher operational temperatures but lower moisture 

content in oil.        

Thermal failure modelling is aimed to define and quantify the short term failure probability of 

distribution transformers under EV scenarios. Immediate failure due to bubbling is identified 

as the fatal risk in the short term of distribution transformers when the hot-spot temperature 

exceeds the bubbling inception temperature. Therefore, the failure probability is defined as the 

probability of the hot-spot temperature exceeding the bubbling inception temperature under 

EV scenarios.  

The hot-spot temperature can be calculated with thermal modelling methods. Oommen’s [13] 

widely accepted model is introduced and applied to calculate the bubbling inception 

temperature. The model requires three inputs of moisture in paper, gas content in oil and oil 



 

12 

 

depth. The moisture in paper is the dominant factor determining the bubbling inception 

temperature; therefore it is used as the controlled parameter in the assessment of the population. 

However, unlike moisture in oil, moisture in paper is difficult to measure due to the practical 

difficulty in taking samples of insulation paper. Therefore, a method is introduced in this work 

to estimate the moisture in paper level of distribution transformers with the moisture in oil 

content based on the equilibrium curve of moisture dynamics between oil and paper. Eventually, 

in case of that the moisture in oil level is unknown; an empirical model could be built to 

estimate the moisture in oil content of distribution transformers with the transformer age by 

curve-fitting the available data collected from previous oil tests.  

In summary, based on the diagram shown in Figure 2.1, the assessment strategy requires input 

data including transformer age and rating, installation condition (indoor/outdoor), customer 

information (number and type), ambient temperature, thermal parameters and EVs penetration 

levels (defined by EV scenarios). The final outputs are yearly loss-of-life, expected lifetime 

and failure probability under defined EV scenarios. 

In this chapter, modelling process of each required element of the assessment strategy is 

introduced, and the strategy is demonstrated on a prototype distribution transformer where the 

measurements of load and ambient data are available.  

2.2 Thermal modelling: determination of hot-spot temperature under EV 

scenarios  

Hot-spot temperature can be regarded as a function of the load factor. However, under the same 

load profile, different transformers will have different hot-spot temperature profiles due to 

different thermal characteristics, which are inherently determined by transformer designs. 

Therefore, parameters of the function should be individual-dependent so that variations of 

thermal characteristics can be reflected.  

IEC 60076-7: 2005 thermal model [11] provides such a set of thermal functions. It is developed 

based on the thermal diagram as shown in Figure 2.2, where the hot-spot temperature is the 

sum of ambient temperature, top-oil temperature rise over ambient and hot-spot to top-oil 

gradient.  
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Figure 2.2: Thermal diagram [11] 

Since in-service transformers are subject to time varying loads and ambient temperatures, IEC 

60076-7: 2005 thermal model estimates hot-spot temperature under arbitrary time-varying load 

and ambient temperatures. The full set of equations when load increases are shown in Equation 

(2-1) to (2-5).    
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(2-5) 

When load decreases, the equation describing hot-spot rise over top-oil, i.e. Equation (2-3), is 

simplified as 

  y
h hi rt H g K     

 
(2-6) 
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Input data required in the model are ambient temperature a  and load factor K , and the output 

is time-varying hot-spot temperature  h t . Other parameters are thermal parameters that 

reflect thermal characteristics of a transformer, thus being individual-dependent.  

IEC loading guide provides one set of values of thermal parameters for distribution 

transformers, which are considered conservative and leading to over-estimated hot-spot 

temperature [14]. In order to obtain more accurate hot-spot temperature by taking consideration 

of individual differences in designs under EV scenarios, these parameters should be refined for 

individual transformers. In this work, methods are proposed and validated for refinement of 

thermal parameters for individual transformers. 

2.2.1 Refinement of IEC thermal model parameters for prototype transformer by curve-fitting 

When estimating hot-spot temperatures under arbitrary loads with the IEC model, thermal 

parameters shown in Table 2-1 should be determined for individual transformers for better 

accuracy. Recommended values for distribution transformers given in the IEC loading guide 

are also shown in Table 2-1, which are generic values and tend to reach conservative hot-spot 

temperatures. Two approaches of refining IEC thermal parameters are introduced in this section. 

Table 2-1: IEC 60076 thermal model parameters and recommended values given in IEC 60076-7: 2005 [11] 

Parameters or  R rg
 H x y o  w  11k  21k  22k  

Recommended 

values 
60* 9* 16.36* 1.10 0.80 1.60 180 4 1 1 2 

*: No recommended values are given in IEC loading guide. These values are derived from guaranteed values seen from distribution 

transformer specification. When estimating hot-spot temperature for a transformer without any information, these values may be used.   

a. Refinement of thermal parameters by curve-fitting  

One approach is to curve-fit the measured top-oil and hot-spot temperatures during the 

extended heat run test with IEC thermal model equations to acquire the best fit thermal 

parameters. 

The estimation process has two steps. The first step is to estimate y, o , w , 11k , 22k  and 

rH g  all together with the hot-spot to top-oil gradient using Equation (2-3) and (2-5). rH g  

is regarded as one single parameter, since rg  and H are apparently interdependent and no 

definite value can be determined for one unless the other is known. The second step is to input 

o  obtained from the first step into Equation (2-2) and (2-4) and then estimate x and 11k  
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together with the top-oil temperature measurements using Equation (2-2) and (2-4). The load 

factor K is an input. The rated load to no-load loss ratio R can be calculated with the rated load 

and no-load losses given by the nameplate of the transformer and the rated top-oil rise or  is 

obtained from heat run test results. 

Due to the non-linearity of equations subjected to the curve-fitting, it is concerned that the 

results may be dependent on the initial values. Via sensitivity studies, it is found that parameters 

11k , 22k , o  and w  are interdependent and no unique values could be determined. However, 

determinate values are obtained for 22/o k , 22w k   and 11o k  . Thus the conclusion can be 

drawn that definite values cannot be determined for 11k , 22k , o  and w  through curve-fitting 

unless any of them is known so that others can be calculated based on the estimated results of  

22/o k , 22w k   and 11o k  . Besides this conclusion, there are some other observations are 

made: 

 21k  is independent on its initial value during the curve-fitting. 

 11k , 22k , o  and w  are interdependent. o  is proportional to 22k ; w is reversely 

proportional to 22k ; 11k  is reversely proportional to o . 

2.2.2 Refinement of IEC thermal model parameters for prototype transformer by calculating 

with heat run test data  

The curve-fitting approach requires hot-spot temperature measurements during heat run test, 

which are often unavailable for existing transformers. Therefore, the other approach of refining 

IEC thermal parameters is proposed to calculate each parameter with standard heat run test 

results.   

In practice, heat run tests can be generally summarised as two regimes, which are conventional 

and extended heat run test. The main difference is that the conventional test only performs 

under the rated load, but the extended one performs under three individual loads, which are 

usually 0.7, 1.0 and 1.25 p.u. representing 50%, 100% and 125% of rated losses. A summary 

of two regimes of heat run tests is provided in Table 2-2, and so are the obtainable IEC thermal 

parameters under each heat run test regime. In addition, since the conventional heat run test 

only provide temperature data under the rated load, the corresponding resultant thermal 

parameters can therefore only be used for the prediction of time-varying hot-spot temperatures 

under the rated load. On the other hand, thermal parameters calculated with temperature data 
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obtained during the extended heat run test can be applied to predict time-varying hot-spot 

temperatures under arbitrary loads. 

Table 2-2: Summary of conventional and extended heat run tests 

Heat run test 

regimes 
Measured data Obtainable thermal parameters 

Hot-spot temperature 

that can be calculated 

accurately 

Conventional heat 

run test 

Ambient 

temperature 
Rated top-oil rise; rated average 

winding to oil gradient; winding 

time constant; top-oil and average 

oil time constants 

Time-varying hot-spot 

temperatures under rated 

load 

Top-oil temperature 

Bottom-oil 

temperature 

Winding resistance 

Extended heat run 

test 

Data above under 

0.7, 1.0 and 1.25 

loads 

 

Parameters above; oil and winding 

exponents 

Time-varying hot-spot 

temperatures under 

arbitrary loads 

The process of calculating each parameter with heat run test results are presented as below. 

 The rated top-oil rise ,o rated                                                                       

, ,o rated o rated a      (2-7) 

 The rated average winding to oil gradient rg  

, ,r w rated ave ratedg      (2-8) 

The winding resistance curve is first converted into the winding temperature curve which is 

extrapolated to the instant of the transformer shutdown to derive the average winding 

temperature by either exponential or polynomial function [15].  

 The winding time constant w  

w  can be derived with the measured winding resistance curve. After converting the resistance 

curve into a temperature curve, w  can be obtained by curve-fitting the temperature curve with 

an exponential function as 

, ,( ) w

t

w rated ave rated rt k t g e  


    
 

(2-9) 
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For transformers with large oil time constants, e.g. oil natural (ON) cooled transformers with 

relatively low ratings, the average-oil temperature drop may be ignored [15]. In this case, the 

term k t  can be ignored. 

Polynomial fitting is also used in practice to extrapolate the average winding temperature curve. 

In this case, w  can be obtained by making a tangent of the fitted curve at the instant of 

transformer shutdown. The crossing point of the tangent and the average-oil temperature line 

indicates w .         

 The top-oil time constant ,o top  

,o top  can be obtained by two ways. The first is through curve-fitting the complete temperature 

rise curve of the top-oil temperature under a constant load with Equation (2-10). This requires 

the top-oil temperature regularly measured, and also the test load should remain the same for 

the entire test.  

,/
, , , ,( ) (1 ) ( )o topt

o rated o ini o rated o init e             
(2-10) 

Another method is through an equation given in IEEE loading guide  [16],  

.
,

60o rated
o top

C

P




 


 
(2-11) 

  

0.132 0.0882 0.4 (for ONAN cooling)A T OC M M M       (2-12) 

The only required datum from the heat run test is ,o rated , since the values of P , AM , and OM  

can be obtained on the transformer nameplate.  

 The average oil time constant o and thermal constant 11k  

o  and ,o top  are linked by 11k , as 

, /11 o top ok    (2-13) 

o  can be also calculated as 

, 60ave rated
o

C

P




 


 
(2-14) 

 The oil exponent x  
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x  can be derived based on Equation (2-15). 

2

,
1

[ ]
1

x
o o rated

R K

R
 

 
  

  
(2-15) 

To derive x , ,/o o rated    is calculated and plotted against the value of 
21

1

R K

R

 


 in a log-log 

scale. Then the slope of the straight line that best fits all the points can be obtained as x. 

 The winding exponent y  

y  can be derived based on Equation (2-16). 

y
rg g K   

(2-16) 

To derive y , / rg g  is calculated and plotted against the corresponding load K  in a log-log 

scale. Then the slope of the straight line that best fits all the points can be obtained as y . 

Theoretically, in addition to the rated load test, only one non-rated load test is required to derive 

exponents x  and y . However, in order to make the derived exponents more representative, at 

least one under-load test and one overload test are required in practice.  

Three parameters of H, 21k  and 22k  cannot be derived only with thermocouple measured 

temperature data during the heat run test, therefore recommended values in IEC loading guide 

have to be used.  

2.2.3 Comparisons between two methods of refining IEC thermal parameters  

Two approaches of refining IEC thermal parameters are summarised and compared in Table 

2-3. Basically, the curve-fitting method provides better accuracy when predicting hot-spot 

temperatures under arbitrary loads but it needs the hot-spot temperature measurements which 

require the installation of optic fibre sensors at the hot-spot location. As an alternative, 

calculating method can be applied on any transformers that possess results of a standard heat 

run test. 
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Table 2-3: A general comparison between two methods for refinement of thermal parameters 

Refinement 

method 
Required data Advantage Disadvantage 

Curve-fitting 

method 

Nameplate information, hot-

spot and top-oil temperature 

measurements 

All parameters can be 

obtained. 

Better accuracy when 

predicting hot-spot 

temperatures. 

Require optic fibre sensors 

for hot-spot temperature 

measurement. 

Calculating 

method 

Nameplate information, 

measured data of a standard 

heat run test 

Do not require additional 

data. 

Can be applied for any 

transformers as long as the 

heat run test data are 

available. 

21k and 22k cannot be 

obtained. 

Poorer accuracy when 

predicting hot-spot 

temperatures. 

 

Two approaches are applied on a prototype distribution transformer. Resultant parameters are 

presented in Table 2-4, where the recommended values of IEC loading guide are also included 

for the comparison.   

Table 2-4: Thermal parameters refined by two methods 

Refinement 

method 
or  R rH g  x y o  w  11k  21k  22k  

Curve-fitting 

method 
56.2 8.67 8.44 0.72 1.08 180 21.7 1.18 2.83 0.91 

Calculating method 50.4 8.67 14.5 0.77 2.39 159.6 11.3 1.26 1 2 

IEC recommended 60 9 16.36 1.1 0.8 1.60 180 4 1 1 

To verify the refined thermal parameters, hot-spot temperatures are calculated with refined 

parameters under different loadings and compared with measurements.  

a. Comparison under heat run test loads 

Firstly, hot-spot temperatures calculated with refined thermal parameters are compared with 

measurements under the load profile of the heat run test, and also hot-spot temperatures 

calculated with IEC recommended parameters are included in the comparison as shown in 

Figure 2.3. Error analysis is provided in Table 2-5. 
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Figure 2.3: Calculated hot-spot temperatures with thermal parameters refined by two methods under heat run test 

loads 

Table 2-5: Error analysis of hot-spot temperatures calculated with thermal parameters refined by two methods under 

heat run test loads 

Refinement method Maximum error (K) Mean error (K) 

Curve-fitting method 3.53 -0.17 

Calculating method 10.25 0.91 

IEC recommended 25.87 12.14 

Under heat run test load, refined thermal parameters offer better accuracy than IEC 

recommended parameters by reducing the maximum error from 25.87 to 3.61 K (with curve-

fitting method) and 10.25 K (with calculating method), and by almost eliminating the mean 

error. 

b. Comparison under cyclic loads 

It may be argued that refined parameters are obtained by curve-fitting the measured data that 

is then used in this comparison so that good fitting is expected. Therefore, another verification 

is conducted by comparing calculated and measured hot-spot temperatures under dynamic 

loads that the prototype transformer is undertaking during its daily operation in a 6.6 kV 

substation. Same parameters as shown in Table 2-4 are used. The load and ambient profiles of 

7 consecutive days in September 2013 are used for the calculation.  
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Figure 2.4: Calculated hot-spot temperatures with thermal parameters refined by two methods under cyclic loads 

Table 2-6: Error analysis of hot-spot temperatures calculated with thermal parameters refined by two methods under 

cyclic loads 

Refinement method Maximum error (K) Mean error (K) 

Curve-fitting method 4.16 0.40 

Calculating method -7.40 -2.38 

IEC recommended 8.15 3.58 

Error analysis in Table 2-6 shows that the maximum error is reduced from 8.15 K to 4.16 K 

(with curve-fitting method) and -7.40 K (with calculating method) by using refined thermal 

parameters. In the meantime, the mean error is almost eliminated by using curve-fitted 

parameters. Therefore, curve-fitted method is preferred to refine thermal parameters when 

predicting hot-spot temperatures under dynamic loads. 

2.3 Thermal failure modelling: determination of failure probability under EV 

scenarios 

EVs charging may cause immediate failure of transformers due to bubbling, which greatly 

increases the operational risk in the short term perspective. When bubbling happens, dielectric 

strength of the transformer insulation system is decreased due to the evolution of free gas from 

the insulation of winding conductor, and breakdown would occur. Bubbling is triggered by 

temperatures; therefore the bubbling inception temperature is regarded as the critical hot-spot 

temperature for the transformer to avoid. For example, 140 °C is regulated in IEC loading guide 

as the hot-spot temperature limit for distribution transformers under normal cyclic loads due to 

the concerns over bubbling [11].        
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In order to investigate EVs effects on distribution transformers in the short term, failure 

probability due to bubbling under EV scenarios is modelled. The failure probability is defined 

as the probability of the hot-spot temperature exceeding the bubbling inception temperature. 

2.3.1 Modelling of bubbling inception temperature     

Past researches [13, 17, 18] have shown that bubbling inception temperature is highly 

dependent on the moisture level of insulation paper of the transformer, and is also affected by 

the gas content and oil pressure. Oommen [13] proposed and verified a model for the 

calculation of bubbling inception temperature in transformers as shown in Equation (2-17),  

0.473/ 1.5856996.7 / (22.454 1.4495 ln ln ) (g/ 30)WT W P e       
(2-17) 

where T is the bubbling inception temperature in K, W is the moisture in paper in % (mass to 

mass), P is the oil pressure in torr and g is the total gas content in % (volume to volume). 

Sensitivity studies have shown that bubbling inception temperature is dominantly controlled 

by the moisture level in paper, while it is insensitive to the oil pressure and gas content. For 

example, the bubbling inception temperature is lifted by around 3 K when the oil depth is 

increased from 1 meter to 3 meters. Effects of gas content is increasing with moisture level; for 

example, a decrease of over 15 K can be observed for bubbling inception temperature when 

the gas content changes from 1% to 9% under the moisture in paper content of 10%.  

Due to the dominating role that moisture in paper plays in determining the bubbling inception 

temperature, it is essential to model the moisture content in paper to reflect different 

transformer conditions. 

2.3.2 Modelling of moisture content in paper  

It is difficult to sample the insulation paper and measure its moisture content in operational 

transformers. As an alternative to the direct measurement, equilibrium curves have been 

developed for the estimation of moisture content of paper with temperature and moisture in oil. 

Equilibrium curves are developed based on the fact that the moisture distribution in transformer 

insulation system is at equilibrium state between oil and paper which depends on the 

temperature [19]. Different equilibrium curves have been developed by several authors [20-

23], and Fessler [24] proposed equations of the equilibrium curves which are shown as 

Equation (2-18) to (2-21).  
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7 0.6685 4725.6/2.173 10 T
vC p e     

(2-18) 
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(2-21) 

where C is the moisture in paper in %; T is the temperature of the equilibrium state in K; PPM 

is the moisture in oil in ppm; vp  is the partial pressure of water vapour in atm; the subscript 

sat indicates the saturated state; cp  is the critical pressure of water in mmHg which is a constant; 

cT  is the critical temperature of water in K which is a constant; A, B, a, b, c, and d are constants 

whose value for mineral oil are shown in Table 2-7. 

Table 2-7: Constant values in Fessler’s equations 

A B a b c d cp  cT  
7.44 1686 3.24 35.86 10  

81.17 10  
32.19 10  

51.66 10  647.26 

To briefly explain the equations of equilibrium curves, Equation (2-18) is proposed by Fessler 

[24] for the modelling of moisture distribution in mineral oil-paper insulation system under 

equilibrium state, and it requires the partial pressure of water and temperature on the interface 

of oil and paper as inputs. The partial pressure of water can be obtained by Equation (2-19), and 

it is proportional to partial pressure in saturation ( ,v satp ) and the relative humidity which can 

be expressed as the ratio of moisture in oil ( PPM ) to the water saturation solubility of oil 

( satPPM ). satPPM  is temperature dependent and can be calculated by Equation (2-20), where A 

and B are constant parameters. ,v satp  can be calculated by Equation (2-21) which is proposed 

by Foss in [25].    

2.3.3 Modelling of failure probability due to bubbling 

With equilibrium curves, moisture in paper can be determined with temperature and moisture 

in oil under the assumption of equilibrium state. Obtained moisture in paper can then be applied 

in bubbling inception model to calculate the inception temperature and compare with the hot-

spot temperature of the transformer in order to investigate if the transformer will fail. The flow 
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chart shown in Figure 2.5 demonstrates how the failure probability of transformers is modelled 

under EV scenarios.     

 

Figure 2.5: Flow chart of modelling failure probability under EV scenarios 

However, equilibrium conditions are generally not attained during the operation of 

transformers due to the variation of load and temperature. Nevertheless, since the time constant 

of the diffusion of moisture in oil and paper is much larger than the time constant of oil 

temperature change, the moisture in paper is not varying as significantly as the temperature 

when the load regularly changes between its peak and valley values in a daily cyclic load. 

Therefore, it is assumed that equilibrium is achieved under an equivalent temperature which is 

taken as the average value of the temperature of a day.  

Since the hot-spot is the most concerned location in transformers, the oil temperature at the 

hot-spot location should be used to derive the equivalent temperature under which the 

equilibrium state is assumed. However, due to the unavailability of the oil temperature adhere 

to the hot-spot, the hot-spot temperature is used instead.   

EVs charging affects mainly the peak hours of a day, and it is assumed that the moisture in 

paper does not change significantly by EVs charging using the assumption that the charging 

time is not long enough for the moisture distribution between oil and paper to follow the change 

of the temperature. Therefore, the moisture level in paper determined with the equilibrium 

under the average hot-spot temperature of a day is used for the calculation of bubbling inception 

temperature.  
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Considering the uncertainties of EVs charging, Monte-Carlo simulations are performed for the 

calculation of the hot-spot temperatures under EV scenarios, and the results are compared with 

bubbling inception temperature to determine the failure probability, which is defined as the 

probability of the hot-spot temperature exceeding the bubbling inception temperature. 

2.4 EV scenarios 

Department for Transport (DfT) introduced several scenarios to project the EVs uptake up to 

2030 in [26], where it assumed the total number of vehicles on road in 2030 in the UK would 

be 35 million, and depending on different EV scenarios, the total number of EVs (including 

BEVs and PHEVs) would be as shown in Table 2-8.  

Table 2-8: EV scenarios defined by DfT report [26] 

Scenarios 
Number of EVs (million) in 

2030 

Penetration level (%) in 

2030 

Business as usual (BAU) 8.6 8.6 

High-range 32.0 32.0 

Extreme-range 58.9 58.9 

The penetration level is the ratio of the number of EVs to the total number of vehicles in the 

UK. Three scenarios are introduced in [26] to project the strength of demand of EVs in the UK. 

Extreme-range scenario is of the worst expected scenario; therefore it is investigated in terms 

of its impacts on distribution transformers. In addition, two other scenarios are investigated for 

comparison, which are High-range scenario and Business as usual (BAU) scenario. To simplify 

the BAU scenario, the EVs penetration level is assumed as 0 %.  

BAU scenario, High-range scenario and Extreme-range scenario are going to be investigated 

to show how distribution transformers will be affected, and the penetration level of three 

scenarios are 0%, 32% and 58.9% respectively. When modelling the EVs charging load, the 

number of EVs are determined by multiplying the EVs penetration level with the number of 

customers connected to the transformer based on the undoubtedly simple assumption that one 

customer owns one vehicle. 
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2.4.1 Modelling of EVs Charing load 

In order to simulate EVs charging load as realistic as possible, a stochastic approach is utilised, 

which probabilistically models EVs types, charging power, charging start time and state-of-

charge (SOC) transferred to the EVs battery. 

a. EVs types 

According to the statistics of registered vehicles from DfT by 2015 [27], around 50% of EVs 

on road are BEVs (17826) and the other 50% are PHEVs (17415), and the most popular models 

of EVs on road are shown in Table 2-9. 

Table 2-9: Most popular EVs models in the UK by 2015 [27] 

Models Market 

share (%) 

Battery 

type 

Battery capacity 

(kWh) 

Max electric 

range (mile) 

BEV / 

PHEV 

Mitsubishi 

Outlander 

34.2 Li-ion 12 34 PHEV 

Nissan Leaf 26.4 Li-ion 24 120 BEV 

BMW i3 7.0 Li-ion 22 100 BEV 

Renault Zoe 5.9 Li-ion 22 130 BEV 

Toyota Prius 4.1 Li-ion 4.4 14 PHEV 

Considering the dominating shares of the top two EV types, it is assumed in this study that all 

BEVs are Nissan Leaf and all PHEVs are Mitsubishi Outlander. Therefore, all EVs charged in 

this study are 50% probability of Nissan Leaf and 50% probability of Mitsubishi Outlander.  

Li-ion batteries have a generic charging pattern, which is composed of three stages, i.e. pre-

charging, current regulation and voltage regulation stages [28]. The duration of each stage 

could vary depending on a few factors such as battery models, temperature, battery SOC and 

charging power. However, detailed modelling of the charging profile of Li-ion batteries is 

beyond the scope of this work, therefore the charging profile of EVs battery is simplified as a 

constant value. 

b. Charging power  

Generally speaking, there are three types of charging in terms of charging power, which are 

slow charging (up to 3 kW), fast charging (7 to 22 kW) and rapid charging (43 to 50 kW). In 

residential properties, the maximum allowed power is around 12 kW [29], therefore slow and 

fast charging are applied for domestic charging. According to statistics of charging points in 

the UK in 2015, the ratio of fast charging to slow charging points is around 7:3 [30]. In this 
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study, it is assumed that the charging power is 70% probability of 7 kW and 30% probability 

of 3 kW.  

The efficiency of charging is depending on a few factors such as temperature, charging power 

and energy transferred in a single charge, [31] compares charging efficiency under various 

conditions and finds the efficiency could vary from 75% to 91%. In this study, the charging 

efficiency is assumed as 85%. 

c. Charging start time  

Past researches [29, 32, 33] often model the charging start time based on the traffic data or 

home arrival time by assuming EVs users start to charge theirs vehicles immediately or one 

hour after arriving home. The modelling of charging start time can be improved by using data 

that observed and collected by EVs trials in the UK.  

The Technology Strategy Board (TSB) launched the Ultra-Low Carbon Vehicle Demonstrator 

(ULCVD) programme in 2008, through which 349 EVs were deployed, and data were collected 

from over 276000 individual trips and 51000 charging events [34-36]. Charging start times 

were monitored and summarised as shown in Figure 2.6. 

 

Figure 2.6: Charging start times monitored in Ultra-Low Carbon Vehicle Demonstrator (ULCVD) [35] 

According to the monitored data, charging starts through the whole day, but a concentration 

can be seen during the peak time around 18:30, when people get home from work. As a matter 

of fact, charging in the morning or afternoon mostly happens in work places or public charging 

points. Therefore, in this study, in order to simulate the domestic charging, the charging start 
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time is assumed to follow a normal distribution with the mean of 18:30 and the standard 

deviation of 1 hour. 

d. SOC transferred to EVs battery  

ULCVD monitored how much SOC was transferred in a single charging event, and Figure 2.7 

shows the statistics of the data. The SOC transferred in a single charging event is the difference 

between the SOC at the end of a charging event and the SOC before it. ULCVD found that 

most EVs were charged full with the majority of charging events (>70% of all monitored 

charging events) ending at over 95% SOC [34]. Therefore, in this study, it is assumed that all 

EVs are charged once a day and they are always charged full. 

 

Figure 2.7: SOC transferred in a single charging event [36] 

2.5 Case study: assessment of adaptability of a prototype distribution 

transformer under future EV scenarios  

After introducing the assessment strategy and defining EV scenarios, the adaptability of a 

prototype distribution transformer is assessed under defined EV scenarios as a demonstration.  

2.5.1 Assessment of hot-spot temperature, loss-of-life and expected lifetime 

Firstly, the hot-spot temperature, loss-of-life and expected lifetime of the prototype distribution 

transformer under defined EV scenarios are assessed. Due to the uncertainty brought by EVs 

charging, Monte-Carlo algorithms are applied for the simulation, and the flow chart of the 

simulation is presented in Figure 2.8. Basically, charging load profiles of individual EVs are 

generated first with stochastically defined uncertainties including EVs type, charging power, 

start charging time and SOC transferred. Then the final load profile is created by adding up all 

individual EVs charging load profiles and the base load profile. The base load profile in this 
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section is from a September day of the substation in which the prototype transformer is installed. 

The hot-spot temperature is calculated with the refined thermal parameters under the final load 

profile. The expected lifetime is estimated assuming the load repeats itself for the whole year. 

This process repeats itself for 5000 times so that 5000 sets of results will be generated. At last 

statistical analysis is conducted on the results in terms of peak loads, peak hot-spot 

temperatures and lifetimes. 
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Figure 2.8: Flow chart of Monte-Carlo simulation to determine hot-spot temperature and lifetime of prototype 

distribution transformer under EV scenarios 

The peak load and peak hot-spot temperature are of key concern since they may lead to 

immediate failure of transformers due to bubbling. Therefore, statistical analysis is conducted 

to investigate the potential range of peak load and hot-spot temperature as shown in Table 2-10. 

Table 2-10 presents the peak load and peak hot-spot temperature ranges under three EV 
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scenarios. It is observed that EVs charging load significantly increases the peak load and peak 

hot-spot temperature. Thermal parameters refined by curve-fitting and calculating methods are 

applied for the assessment.   

Comparing to the BAU scenario, the peak load is increased at least by 39.7% and 93% under 

High-range and Extreme-range scenarios respectively. The peak hot-spot temperature is 

increased at least by 23.7% and 55.5% respectively with curve-fitting method. The peak load 

ranges are almost the same for two refinement methods. In terms of peak hot-spot temperatures, 

thermal parameters refined by the calculated method lead to underestimated hot-spot 

temperatures when the load is lower than the rated level; and overestimated hot-spot 

temperatures during overloads. Therefore, Under BAU scenario, the peak hot-spot temperature 

of thermal parameters refined by calculating method is lower; but under Extreme-range 

scenario, when the transformer is heavily overloaded, the peak hot-spot temperature of thermal 

parameters refined by calculating method is much higher.  

Table 2-10: Comparison of peak load and hot-spot temperature ranges under EV scenarios with thermal parameters 

refined by two methods 

EV scenarios 
Refinement 

method 

EVs penetration 

level (%) 

Peak load 

range (p.u.) 

Peak hot-spot 

temperature range (°C) 

BAU scenario 
Curve-fitting 

0 0.73 
65.1 

Calculating 60.67 

High-range 

scenario 

Curve-fitting 
32 

[1.02, 1.28] [80.5, 90.1] 

Calculating [1.01, 1.29] [79.2, 92.0] 

Extreme-range 

scenario 

Curve-fitting 
58.9 

[1.41, 1.79] [101.2, 115.7] 

Calculating [1.40, 1.78] [110.2, 135.4] 

Figure 2.9 and Figure 2.10 display the CDF plots of peak load and peak hot-spot temperature 

respectively under High-range and Extreme-range scenarios with two refinement methods. 

 

Figure 2.9: CDF of peak loads under EV scenarios 
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Figure 2.10: Comparison of CDF of hot-spot temperature under EV scenarios with thermal parameters refined by 

two methods 

According to the CDF plots, it can be seen that overloading is guaranteed under both of High-

range and Extreme-range scenarios. Especially under Extreme-range scenario, the peak load 

has over 90% probability to reach the restricted value of 1.5 p.u. given by IEC loading guide 

for normal cyclic load [11]. From a hot-spot temperature’s point of view, the highest hot-spot 

temperatures that can be reached under High-range scenario are 90.1°C and 92.0°C 

respectively with curve-fitting and calculating refinement methods, which are lower than the 

rated hot-spot temperature of 98°C under rated load that is given in the IEC loading guide. It 

means that under High-range scenario, the transformer is always under-aged, and the expected 

lifetime will be longer than the value recommended in the loading guide which is assumed 

under a constant hot-spot temperature of 98°C. However, under Extreme-range scenario, the 

peak hot-spot temperatures can go up to 115.7 °C and 135.4°C respectively with curve-fitting 

and calculating refinement methods. It means that during the EVs charging, the transformer 

ageing will be accelerated. Nevertheless, the daily loss-of-life still could be compensated by 

the under-ageing during the off-peak time, when the hot-spot temperature is much lower than 

the rated value of 98°C. Therefore, whether the long term thermal ageing is accelerated or not 

under Extreme-range scenario cannot be determined solely by the peak hot-spot temperature, 

but further calculations are required.  

It should be noted that this conclusion may not be representable for other transformers. The 

rated hot-spot temperature rise is only 65.1 K for the demonstrated transformer, which is much 

lower than 78 K that is limited by IEC loading guide, hence the thermal design of this 

transformer is good. For other transformers whose thermal design is not as good as this one, 

there may be a higher risk to operate under High-range scenario. Therefore the methodology 
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of assessing the thermal performance under EV scenarios introduced here should be applied 

for individual distribution transformers to investigate their adaptabilities under EV scenarios.   

The loss-of-life and expected lifetime is calculated as shown in Table 2-11. 

Table 2-11: Comparison of assessment of long term thermal ageing under EV scenarios with thermal parameters 

refined by two methods 

EV scenarios Refinement 

method 

EVs penetration 

level (%) 

Daily loss-of-life 

range (p.u.)* 

Expected lifetime 

range (p.u.)+ 

BAU scenario Curve-fitting 0 0.009 111 

Calculating 0.005 200 

High-range 

scenario 

Curve-fitting 32 [0.025, 0.045] [22.5, 40] 

Calculating [0.019, 0.041] [24.3, 53.2] 

Extreme-range 

scenario 

Curve-fitting 58.9 [0.151, 0.476] [2.1, 6.7] 

Calculating [0.325, 3.27] [0.3, 3.1] 
*: 1.0 p.u. is under constant 98°C hot-spot temperature according to IEC loading guide [11]  

+: The base value is set as 17.12 years. 

With curve-fitting refinement method, the daily loss-of-life is increased by a factor as larger as 

53 (0.476 compared to 0.009) under Extreme-range scenario, and the expected lifetime is 

reduced by up to 98% (2.1 compared to 111) with EVs charging. Therefore, from a long-term 

failure perspective, EVs charging will significantly reduce the thermal life of distribution 

transformers, and adaptive asset management strategies must be changed to face the upcoming 

EV scenarios. 

Since underestimated hot-spot temperature tend to be obtained under BAU scenario with the 

calculating method, the loss-of-life is correspondingly underestimated, which leads to an 

overestimated lifetime. Under overloads, the calculating method tends to give overestimated 

hot-spot temperatures. Therefore, the resultant loss-of-life is much higher than that of the 

curve-fitting method, and the resultant lifetime is correspondingly lower under Extreme-range 

scenario. 

2.5.2 Determination of failure probability under EV scenarios   

Failure probability is determined for the prototype transformer with two refinement methods 

under three EV scenarios, i.e. BAU, High-range and Extreme-range EV scenarios. The load 

and ambient profiles of the day as used in the loss-of-life calculation example are used here. 

The measured hot-spot temperature of the day ranges from 43.1°C to 64.6°C, and has an 

average value of 53.8°C. Bubbling inception temperatures are calculated by Equation (2-17), 

where the gas content used is 9%, and the oil depth used is 1.57 m which is measured from the 
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design diagram of the distribution prototype transformer. The moisture in paper is calculated 

by Equation (2-18) to Equation (2-21). 53.8°C, the average hot-spot temperature of the day, is 

used for the calculation of moisture in paper. Various values of moisture in oil are used to 

reflect different conditions (wetness) of the insulation system. These values are given under 

the sampling temperature of 20°C, since IEC 60422 [37] suggests to normalise water content 

under 20°C and gives a guideline to interpret the data for the assessment of the condition of the 

insulation system. Resultant bubbling inception temperatures are shown in Table 2-12, which 

also includes the various moisture in oil conditions and resultant moisture in paper values. 

To determine the failure probability, the probability of the hot-spot temperature exceeding the 

bubbling inception temperature is estimated. A simple way is to achieve the failure probability 

through the CDF of peak hot-spot temperature as the example shown in Figure 2.11 (with 

curve-fitting refinement method), where the failure probability can be found by the cross point 

between bubbling inception temperature and the CDF of peak hot-spot temperatures. Therefore, 

in the example in Figure 2.11, the failure probability under High-range and Extreme-range EV 

scenarios are found as 0 and 31.5% when the bubbling inception temperature is 108.8°C, which 

is calculated with a moisture in oil of 17.5 ppm under 20°C by Equations from (2-17) to (2-21). 

 

Figure 2.11: Example of determination of failure probability under EV scenarios 

Determined results of moisture in paper, bubbling inception temperature and failure probability 

under three EV scenario are shown in Table 2-12.     
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Table 2-12: Comparison of assessment of short term failure probability under EV scenarios with thermal parameters 

refined by two methods 

Moisture in oil @ 20 °C 

(ppm) 
2.5 5 10 15 17.5 20 25 

Percentage to the saturation 

(%) 
4.5 9.1 18.2 27.3 31.8 36.4 45.5 

Conditions according to IEC 

60422 
Dry Moderate wet Wet Extreme wet 

Moisture in paper (%) 1.54 2.44 3.88 5.09 5.65 6.17 7.17 

Bubbling inception 

temperature (°C) 
154.99 137.90 121.80 112.47 108.80 105.48 99.39 

 Failure probability (%) 

BAU scenario 

Curve-

fitting 
0 0 0 0 0 0 0 

Calculating 0 0 0 0 0 0 0 

High-range 

scenario 

Curve-

fitting 
0 0 0 0 0 0 0 

Calculating 0 0 0 0 0 0 0 

Extreme-

range scenario 

Curve-

fitting 
0 0 0 1 31.5 89 >99 

Calculating 0 0 44.3 >99 >99 >99 >99 

With curve-fitting refinement method, the prototype distribution transformer only faces failure 

risks under Extreme-range EV scenario. Also, the failure starts to occur when the insulation is 

reaching wet status according to IEC 60422. The threshold value of the moisture in oil is 15 

ppm @ 20 °C, above which the failure probability increases significantly with the moisture in 

oil. When the moisture in oil reaches as high as 25 ppm at 20°C, the failure is almost guaranteed 

under the Extreme-range scenario. 

With calculating method, same as the curve-fitting method, no failure risks are faced by the 

prototype transformer under BAU and High-range scenarios. However, under Extreme-range 

scenario, since the hot-spot temperature is overestimated during overloads by thermal 

parameters refined by the calculating method, higher failure probabilities are obtained with the 

calculating method when the transformer’s oil is wetter than 10 ppm @ 20 °C. 

However, this conclusion is only applicable for the investigated prototype distribution 

transformer. For other distribution transformers in the population, the failure probability should 

be assessed by their own loading condition, thermal performance and wetness status. 
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2.6 Summary 

In this chapter, an assessment strategy is introduced and applied for adaptability of a prototype 

distribution transformer under EV scenarios in terms of its long term ageing and short term 

failure risks. The strategy contains two parts, i.e. thermal modelling and thermal failure 

modelling. Thermal modelling aims to calculate transformer hot-spot temperature, loss-life and 

lifetime as accurate as possible by refining thermal parameters. Thermal failure model aims to 

estimate the failure probability due to bubbling under EV scenarios.  

Two methods are proposed for the refining of thermal parameters. Comparison of two methods 

indicates that curve-fitting method is preferred than the calculating method for better accuracy 

when calculating hot-spot temperature under either heat run test loads or dynamic loads. 

However, curve-fitting method requires measured hot-spot temperature during heat run test 

which is often not available for existing distribution transformers.  

Failure probability due to bubbling is defined as the probability of hot-spot temperature 

exceeding bubbling inception temperature. A method of estimating bubbling inception 

temperature is introduced in this chapter and it requires the moisture in paper as input, which 

can be estimated by moisture in oil assuming the equilibrium state of moisture between oil and 

paper is reached during daily operation and EVs charging of distribution transformers.   
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3.  Assessment of distribution transformer population under EV 

Scenarios 

The strategy of assessing adaptability of distribution transformers under EV scenarios is 

applied on a group of selected transformers from the distribution transformer population of 

ENW for the demonstration purpose. 

Different from the prototype transformer demonstrated in Chapter 2, most existing 

transformers in the population do not have measured load and ambient profiles. Therefore, 

alternative modelling approaches to estimate the load and ambient profiles are introduced.  

3.1 Load modelling method for operating individual distribution transformers  

A load modelling tool is required to construct the load profile of each individual distribution 

transformer with reasonable accuracy for the hot-spot temperature calculation when the 

measurements are not available. 

In the England, load profiles of electricity customers in the distribution level are defined as 

eight Profile Classes [38]. Customers in the distribution network are accordingly categorised 

into eight classes. For each class, nationwide half-hour energy usages have been measured and 

collected by Elexon. By analysing the data, yearly half-hour load profiles are generated by 

Elexon for a single customer of each profile class. Considering the seasonality of loads in a 

year, five sub classes are defined for each profile class, which are spring, summer, high summer, 

autumn and winter. With Elexon profiles, load profiles of one distribution transformer can be 

produced by summing up all loads each of which belongs to the eight profile classes.  The sub-

load profiles can be obtained by multiplying the number of customer and the corresponding 

Elexon profiles. With the customer number database provided by ENW, yearly half-hour load 

profiles of any transformers can be modelled by Elexon profiles. Interpolation can be applied 

to generate the minute-based load profiles for the calculation of hot-spot temperatures.  

3.1.1 Accuracy of modelling load profiles with Elexon profiles 

Before applying this load modelling approach for the assessment of thermal performance, the 

accuracy of the approach is investigated by comparing with measured load data of a group of 

distribution transformers. By comparing with available measured load data, which are half-
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hour load of 7289 days from 84 distribution transformers, errors of loads modelled by Elexon 

profiles are statistically analysed, where the results are showing in Table 3-1. 

Table 3-1: Error analysis of loads modelled by Elexon profiles of 84 investigated distribution transformers 

 Underestimation Overestimation 

Error <-60% <-40% <-20% <0% >0% >20% >40% >60% 

Percentage of data 11.3% 31.9% 53.9% 76.7% 23.3% 6.9% <1% <0.1% 

Results show that Elexon profiles tend to underestimate the load data of this group of 

transformers. Underestimation is observed on 76.7% of compared data, and the error can be as 

large as -60%. To calibrate the load modelled by Elexon profiles, the mean error instead of the 

maximum error should be utilised as a conservative indicator to reflect the wide error range. 

The mean error is observed as -30.6%. Therefore, a calibration factor of 1.3 is introduced in 

this work when using Elexon profiles to model loads of distribution transformers that do not 

have recorded load data. 

3.2 Modelling of ambient temperature   

Ambient temperature is one major environmental factor for the determination of the hot-spot 

temperature of transformers. Ideally, for dynamic consideration, such as under EV scenarios, 

actual ambient temperature profiles should be applied when calculating the hot-spot 

temperature with IEC thermal model. However, actual ambient temperatures are not available 

for transformers that the surrounding ambient temperatures are not monitored. In this case, a 

constant equivalent temperature can be taken as ambient temperature according to the IEC 

loading guide [11].  

The equivalent temperature is yearly weighted ambient temperature and is designed as a 

constant, the fictitious ambient temperature that causes the same ageing as the variable 

temperature does during the load cycle. It can be derived based on Equation (3-1) based on the 

assumption that the real ambient temperature varies sinusoidally during the load cycle [11]. 

Where E  is the equivalent ambient temperature; ya  is the yearly average temperature and 

,ma max  is the monthly average temperature of the hottest month. 

1.85
,0.01 [2 ( )]E ya ma max ya         

(3-1) 
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3.2.1 Determination of yearly weighted ambient temperature  

The value is determined by Equation (3-1) with historical monthly ambient temperature data 

since 1910 in northwest England obtained from Met Office [39].  

The yearly average temperature is the mean value of annually averaged ambient temperatures 

since 1910 in northwest England, which is 12.0 °C. The monthly average temperature of the 

hottest month is the mean value of temperatures of the hottest month since 1910, and the value 

is 19.2 °C. Consequently, the weighted ambient temperature is obtained with as 13.4 °C.  

3.2.2 Correction of ambient temperature for transformer enclosure 

The other factor of the environmental element considered is the transformer enclosure. Since 

distribution transformers are mainly ONAN cooled, effective air flows are key to the heat 

dissipation. Therefore, when a distribution transformer is not installed in the open air, the 

enclosure would weaken the heat dissipation and the transformer would experience extra 

temperature rises on the ambient temperature and hence rated top-oil rise. Ideally, the value of 

the extra temperature rise should be determined by tests, however, considering the general 

unavailability of such tests, IEC loading guide provides values for different types of 

transformer enclosures as shown in Table 3-2. The extra temperature rise of the rated top-oil 

temperature rise is half of the increase in the yearly weighted ambient temperature. 

Table 3-2: Correction for increase in ambient temperature due to enclosure [11] 

Type of enclosure 

Number of 

transformers 

installed 

Correction to be added to 

weighted ambient temperature (K) 

Transformer size (kVA) 

250 500 750 1000 

Underground vaults with natural 

ventilation 

1 11 12 13 14 

2 12 13 14 16 

3 14 17 19 22 

Basements and buildings with poor 

natural ventilation 

1 7 8 9 10 

2 8 9 10 12 

3 10 13 15 17 

Buildings with good natural ventilation 

and underground vaults and basement 

with forced ventilation 

1 3 4 5 6 

2 4 5 6 7 

3 6 9 10 13 

In this work, when assessing individual transformers of the population, the type of enclosure 

is unknown for indoor installed transformers. Therefore, it is all assumed that all indoor 

installed transformers are in basements or buildings with poor natural ventilation. 
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3.3 Moisture content in oil 

Apart from load and ambient profiles for the calculation of hot-spot temperature, moisture in 

oil is also required for the estimation of bubbling inception temperature, which could be 

obtained by oil test. However, due to general unavailability of oil test data, only a limited 

number of transformers have records of oil test information among the whole population. Oil 

test data of around 2000 transformers in the population are found. The earliest data found are 

from early 1990s, and the latest data found are from 2012.  

By analysing the moisture in oil data, it is expected to find an empirical model to link the 

moisture in oil with the transformer age, so that it would be possible to estimate the moisture 

in oil for every transformer of the population with its transformer age when the measured value 

is not available. 

a. Correcting moisture in oil to 20 °C  

In order to link the moisture in oil values to the oil aging status, all measured values are 

corrected to a standard sampling temperature of 20°C which is recommended in IEC 60422 

[40] with Equation (3-2). Where 20PPM  is the moisture in oil at 20°C; TPPM  is the moisture 

in oil under temperature T in °C.  

0.04
20 2.24 T

TPPM PPM e     
(3-2) 

In the oil test database, moisture in oil is given in ppm with the date when the oil sample is 

taken, while the sampling temperature is missing. Since a large number of values are greater 

than 55 ppm, which is the saturated level of mineral oil under 20°C, it is deduced that the 

sampling temperature is unlikely 20°C but approximate to the operational oil temperature of 

the transformer subject to the oil test. 

The operational oil temperature of each individual distribution transformer is calculated as the 

yearly mean top-oil temperature with IEC thermal model and yearly load profiles estimated by 

Elexon profiles and the corresponding customer information.  

One set of generic thermal parameters are applied for the calculation, which are refined based 

on extended heat run test data of 20 distribution transformers representing the population. 

Information of 20 distribution transformers is presented in the appendix. The methodology of 

refining IEC thermal parameters based on extended heat run test data proposed in Chapter 2 is 
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applied for the refinement. 20 sets of thermal parameters are first obtained for 20 representative 

transformers, and the average value of each parameter is obtained to be eventually used for the 

calculation of the top-oil temperature of the population. The full set of generic thermal 

parameters applied for the population for determining the “true” moisture in oil is presented in 

Table 3-3.  

Table 3-3: Refined representative thermal parameters for distribution transformer population 

R  or  rg  H  o  w  x y 11k  21k  22k  
8.7 50.6 16.8 1.1 180 11.4 0.8 1.6 1.1 1 2 

Resultant mean yearly top-oil temperatures are presented in Figure 3.1, which shows that all 

moisture data recorded in the database are sampled over 20°C, so when converted to 20°C with 

Equation (3-2), all moisture values will be reduced after correction.  

 

Figure 3.1: Mean yearly top-oil temperature of distribution transformer population calculated with Elexon profiles 

The process of accumulation of moisture in transformer oil is complex, which can be affected 

by many factors such as installation conditions, loading conditions, transformer design and age. 

By correcting to 20°C with top-oil temperatures calculated by Elexon profile derived yearly 

loads, the effects of loading conditions are considered to be eliminated. A comparison between 

original measured moisture in oil values and corrected values is shown in Figure 3.2. It can 

firstly be seen that corrected values (blue marks) are lower than original values (red dots). 

Secondly, a clear increasing trend with transformer oil age can be observed on either of the 

original or the corrected values. 
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Figure 3.2: Originally measured moisture in oil data and corrected values of distribution transformer population 

The corrected moisture values are investigated in terms of installation locations, transformer 

design and age respectively on the accumulation of moisture in oil. 

b. Effects of variation of transformer design    

To investigate the effects of transformer design, transformers are grouped in accordance to 

their manufacturers. Moisture in oil data of transformer from three most popular manufacturers 

are compared. Due to the distinguished oil age distribution of three manufacturers, transformers 

within age group of 20 years to 40 years are selected for the comparison. The mean values of 

moisture in oil data for this age group are 13.5 ppm, 11.7 ppm and 17.7 ppm for Ferranti, 

Lindley Thompson (LT) and South Wales Switchgear (SWS) transformers respectively.  

SWS transformers have highest mean value of moisture in oil for this age group, which 

indicates SWS’s design may be worse and less robust in terms of controlling the moisture 

accumulation during the transformer ageing. However, due to the limited number of 

transformers (only 34 transformers contained in this age group for SWS), this conclusion is 

still suspicious. For the other two manufacturers, 1.8 ppm difference is not significant 

considering the range of the variation is between 2 ppm to 50 ppm. Therefore, based on the 

investigation at this stage, no conclusions can be drawn on how the variation of transformer 

design would affect the moisture accumulation in oil during the transformer ageing. 

c. Effects of installation conditions 

It is known that transformer enclosure would cause extra rises in the ambient and top-oil 

temperatures, and how it impacts the moisture accumulation is investigated by comparing the 

corrected moisture data of indoor and outdoor installed transformers as shown in Figure 3.3. 

According to the results, outdoor installed transformers tend to have higher moisture in oil 
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values. The average moisture in oil value of outdoor transformers is 9.8 ppm higher than that 

of indoor transformers.   

 

Figure 3.3: Corrected moisture data of indoor and outdoor installed distribution transformers 

d. Estimate of moisture in oil with transformer oil age 

The purpose of the analysis of moisture in oil data is to build an empirical model to estimate 

the moisture in oil with transformer oil age for transformers that do not have measured moisture 

in oil data. Since the previous analysis shows that transformer enclosures impact the moisture 

accumulation in oil, separate models should be built for indoor and outdoor transformers.   

Linear regression is applied to fit the moisture in oil data of indoor and outdoor transformers 

separately. Intercepts of both fittings are fixed at 5 ppm when the transformer age is 0 in order 

to reflect the dry condition of the oil in new transformers. The reason of utilising the linear 

regression instead of non-linear regression is that due to the dispersity of the data, applying a 

more complexed non-linear equation does not improve the goodness of fitting comparing to 

applying a simple linear equation. Either of linear or non-linear regression only gives out a 

goodness of fitting no better than 0.3. Therefore, the simpler linear regression is selected for 

the fitting.   

Fitting of indoor transformers is presented in Figure 3.4. In order to capture the variation of the 

data along the fitted line, a random variation is defined to follow the normal distribution. The 

standard variance of the normal distribution is obtained by finding the upper and lower lines in 

Figure 3.4, which indicates the range that covers 90% of all data. The upper line is the fitted 

line plus three times of the standard variance, and the lower line is the fitted line minus three 

times of the standard variance. The standard variance is found by increasing from a small 

number until the number of data between the upper and lower lines reaches 90% of all data. As 
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a result, the equation to estimate the moisture in oil data of indoor transformers is obtained as 

Equation (3-3), where T is the transformer age; inPPM  is the moisture in oil of indoor 

transformers under age T, and (0,3)N  is a normal distribution with mean of 0 ppm and standard 

variance of 3 ppm.   

 

Figure 3.4: Fitting of moisture in oil data of indoor distribution transformers 

5 0.23 (0,3)inPPM T N     (3-3) 

Similar to indoor transformers, the fitting is conducted to outdoor transformers as shown in 

Figure 3.5, and the resultant equation is shown as Equation (3-4). Comparing to indoor 

transformers, the slope of the linear line fitted to outdoor transformers is significantly increased 

(0.35 ppm/year comparing to 0.23 ppm/year), which indicates the accumulation rate of outdoor 

transformers is much larger than that of their indoor peers. In addition, the standard variance 

of outdoor transformers is 5 ppm, while it is 3 ppm of indoor transformers, which indicates the 

moisture in oil of outdoor transformers are more dispersed and uncertain to predict.   

 

Figure 3.5: Fitting of moisture in oil data of outdoor distribution transformers 

5 0.35 (0,5)outPPM T N     (3-4) 
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With the models derived above, moisture in oil value can be estimated for any distribution 

transformers in the population by the transformer age. Resultant moisture in oil can be applied 

for the calculation of moisture in paper and the obtained moisture in paper will be used for the 

calculation of bubbling inception temperature with the bubbling inception temperature model. 

Eventually, the bubbling inception temperature will be utilised for the estimation of failure 

probabilities of distribution transformers under EV scenarios.  

Accumulation of moisture in oil is a complex process, and a simple linear equation used for 

the regression in this stage is only to attempt to fit the measured data of a small group of 

sampled transformers and to roughly capture the trend. Considering the fitted data are the only 

available data of the population, the method introduced here is necessary for the prediction of 

moisture in oil of transformers without measured values in spite of its insufficiency. Potential 

future work of deriving a more sophisticated model for the prediction of moisture in oil will be 

extremely beneficial so that the moisture in paper and eventually the failure probability under 

EV scenarios can be estimated more accurately. 

3.4 Assessment of distribution transformer population under EV scenarios   

3.4.1 Selection of transformers for demonstration 

150 transformers are selected from the population for the demonstration of the assessment 

strategy. The transformer age is controlled in the selection so that the wide age profile can be 

covered. Three age groups are defined as 0 to 20, 20 to 40 and 40 to 60 years old transformers. 

For each age group, 50 transformers are randomly selected from the population. Figure 3.6 

shows age and yearly peak load data of the selected transformers. The load of each transformer 

is calculated with its customer information and Elexon profiles, and the calibration factor of 

1.3 is applied. 
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Figure 3.6: Distribution transformers selected for demonstration       

3.4.2 Long term risks under EV scenarios 

Yearly loss-of-life is calculated for each transformer under three EV scenarios. Firstly, yearly 

loss-of-life, mean and peak hot-spot temperatures are calculated under BAU scenario as shown 

in Figure 3.7.  

 

Figure 3.7: Yearly loss-of-life, mean and peak hot-spot temperatures under BAU scenario (No EVs penetration) 

According to the IEC ageing model, the loss-of-life is non-linearly associated with the hot-spot 

temperature, and results show that the mean and peak yearly hot-spot temperatures are well 

below the 98°C which is the hot-spot temperature under a constant rated load representing a 

rated loss-of-life. Therefore, the resultant loss-of-life is much lower than the rated value. The 

unit of the yearly loss-of-life used here is year per year, which means the equivalent years of 

ageing in a yearly operation. The highest yearly loss-of-life is obtained as 0.03 year per year 

under the peak and mean hot-spot temperatures of 87.5 °C and 59.3 °C respectively. Statistical 

analysis of loss-of-life, mean hot-spot temperature and peak hot-spot temperature under BAU 

scenario are demonstrated in Table 3-4. More than 97% of the transformers have a yearly loss-

of-life lower than 0.01 year per year. Mean hot-spot temperatures of 96% transformers are 

below 50 °C, and peak hot-spot temperatures of 94% transformers are below 70°C. 

Table 3-4: Statistical analysis on loss-of-life, mean hot-spot temperature and peak hot-spot temperature under BAU 

scenario 

Loss-of-life (year per year) [0.0001, 0.001) [0.001, 0.01) [0.01, 0.1) 

Percentage (%) 56.7 36 7.3 

Mean hot-spot temperature (°C) [20, 50) [50, 70) [70, 90) 

Percentage (%) 96 4 0 
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Peak hot-spot temperature (°C) [20, 50) [50, 70) [70, 90) 

Percentage (%) 67.3 26.7 6 

The lifetime of a transformer will be increased by a factor equal to the reciprocal of its yearly 

loss-of-life comparing to the expected lifetime of a constantly rated loaded transformer. 

Assuming the lifetime of a constantly rated load distribution transformer is 17.12 years 

according to IEC loading guide [11], the expected lifetimes of the group of transformers will 

be as large as over 100 years. In this case, the value itself is practically meaningless, however, 

it indicates that these transformers will not fail due to the long term thermal ageing under 

current loading conditions before they are replaced or fail due to other causes.  

To investigate the loss-of-life under High-range and Extreme-range EV scenarios, Monte-

Carlo simulations are conducted so that the randomness of EVs charging load is taken into 

account. Results of the load, hot-spot temperature and loss-of-life from all repetitions are 

averaged and outputted as the final results for each transformer. A statistical analysis of yearly 

RMS and peak loads under three EV scenarios is presented in Table 3-5, which shows the 

percentages of transformers in different load ranges. 

Table 3-5: Statistical analysis of yearly RMS and peak loads under three EV scenarios 

RMS load (p.u.) [0, 0.3) [0.3, 0.6) [0.6, 0.9) 

BAU scenario 46% 51.3% 2.7% 

High-range scenario 34.7% 59.3% 6% 

Extreme-range scenario 28.7% 56% 15.3% 

Peak load (p.u.) [0, 1.0) [1.0, 2.0) [2.0, 3.0) 

BAU scenario 98% 2% 0 

High-range scenario 58% 41.3% 0.7% 

Extreme-range scenario 30% 57.3% 12.7% 

The number of overloaded transformers is increasing with the penetration of EVs. Under BAU 

scenario, only 2% transformers are overloaded, while under High-range and Extreme-range 

scenarios, the percentage increases to 42% and 70% respectively. Furthermore, 12.7% 

transformers are extremely overloaded under Extreme-range scenario, where peak load exceeds 

2.0 p.u. Depending on the penetration level, the peak load can be doubled or tripled. However, 

as to the yearly RMS load, since the huge peak load is compensated by the low valley load 

values during a day, the increase of RMS load caused by EVs charging load is relatively less 

than the peak load. For 150 demonstrated distribution transformers, the peak load increases by 
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77 % and 146% in average under High-range and Extreme-range EV scenarios respectively; 

and as a comparison, the yearly RMS load only increases by 16% and 33%. 

A statistical analysis of yearly mean and peak hot-spot temperatures under three EV scenarios 

is presented in Table 3-6. It can be seen the peak hot-spot temperature is significantly 

influenced by EVs penetration. Under BAU scenario, the highest peak hot-spot temperature is 

87.5°C, and the majority of transformers (85.3%) are operating below 60°C. Under High-range 

scenario, more than half of all transformers have peak hot-spot temperature higher than 60°C, 

and there are 4% transformers having peak hot-spot temperatures over 120°C, which might 

trigger a potential failure. Under Extreme-range scenario, as much as 27.3% transformers have 

peak hot-spot temperatures over 120°C.     

Table 3-6: Statistical analysis of yearly mean and peak hot-spot temperatures under three EV scenarios 

Mean hot-spot temperature (°C) [6, 40) [40, 60) [60, 80) 

BAU scenario 76% 24% 0 

High-range scenario 61.3% 37.3% 1.4% 

Extreme-range scenario 48.7% 47.3% 4% 

Peak hot-spot temperature (°C) [0, 60) [60, 120) [120, 180) [180, 240) 

BAU scenario 85.3% 14.7% 0 0 

High-range scenario 43.3% 52.7% 4% 0 

Extreme-range scenario 20.7% 52% 24% 3.3% 

For 150 demonstrated distribution transformers, the peak hot-spot temperature increases by 47% 

and 100% in average under High-range and Extreme-range EV scenarios respectively; and as 

a comparison, the yearly average value only increases by 6% and 13%. Results show that even 

the peak hot-spot temperature can go up to 230°C according to the calculation; the highest 

yearly mean value is only as large as 72°C. Since the peak temperature only lasts for few hours 

during a day, it may contribute less to the yearly loss-of-life than the mean temperature. 

Therefore, the dominant value will be the yearly mean hot-spot temperature in terms of yearly 

loss-of-life, and EVs charging only poses a limited impact on it. Consequently, the yearly loss-

of-life is only limited affected by the EVs penetration, as shown in Figure 3.8.   
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Figure 3.8: Yearly loss-of-life under three EV scenarios 

Table 3-7: Statistical analysis of yearly loss-of-life under three EV scenarios 

Loss-of-life (year per 

year) 

[0.0001, 

0.01) 

[0.01, 0.1) [0.1,1) [1,10) [10, 100) [100, 

10000) 

BAU scenario 92.7% 7.3% 0 0 0 0 

High-range scenario 78.7% 11.3% 4.7% 5.3% 0 0 

Extreme-range scenario 54% 19.3% 7.3% 6% 4% 8% 

A statistical analysis on the loss-of-life under three scenarios is displayed in Table 3-7. The 

majority of investigated distribution transformers is not over-aged even under Extreme-range 

EV scenario. Under High-range EV scenario, only 8 out of 150 transformers (5.3%) have a 

yearly loss-of-life larger than the rated value. Under Extreme-range EV scenario, the number 

is 27 out of 150 transformers (18%). The reason is that despite of the huge peak load and peak 

hot-spot temperatures, the yearly loss-of-life is very much compensated by the off-peak time, 

when the load and hot-spot temperature are much lower than the peak time.  

Further investigations in Figure 3.9 show that all of these over-aged transformers are 

possessing peak hot-spot temperatures over 130 °C. Under such high values of hot-spot 

temperature, the top concern will be the short term failure instead of long term thermal ageing. 
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Figure 3.9: Peak hot-spot temperatures of over-aged distribution transformers 

Therefore, it might be concluded that EVs charging would be less concerned on the acceleration 

of thermal ageing and the reduction of transformer lifetime than the immediate failure due to 

bubbling, since the peak load and hot-spot temperature will be compensated by the low values 

during the off-peak time and eventually lead to a moderate ageing even under high EVs 

penetration such as Extreme-range EV scenario.  

3.4.3 Short term risks under EV scenarios 

Short term risks of distribution transformers under EV scenarios are essentially due to bubbling. 

According to the assessment strategy proposed, the bubbling inception temperature is 

dominantly determined by the moisture in paper insulation, which is derived by the moisture 

in oil of the transformer. Figure 3.10 shows the moisture levels respectively in oil and paper 

which are derived by the models introduced in Chapter 2. In accordance to the moisture in oil 

model, i.e. Equation (3-3) and (3-4), apart from the linear increase with age, a random variation 

is considered. Therefore, for each transformer, different values of moisture in oil are generated 

for each repetition during the Monte-Carlo simulation. In addition, since the transformer age is 

the only input data for estimation of moisture in oil or paper, same values of moisture in oil or 

paper are applied for the same distribution transformer under different EV scenarios in one 

simulation. The data plotted are mean values from all repetitions of simulations of each 

transformer.  
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Figure 3.10: Moisture in oil and paper of selected transformers     

 Results in Figure 3.10 show that a noticeable deviation can be observed between indoor and 

outdoor transformers in terms of either moisture in oil or paper. The derivation is increasing 

with the transformer age. For transformers over 50 years old, the deviation could be as large as 

7 ppm and 2.5 % for moisture in oil and paper respectively. These significant deviations imply 

that outdoor transformers tend to have lower bubbling inception temperatures, which is indeed 

observed in the following analysis.     

Based on the derived moisture in paper, the bubbling inception temperature is calculated and 

compared with the peak hot-spot temperature as shown in Figure 3.11. Since the hot-spot 

temperatures of each repetition during the Monte-Carlo simulation are different due to the 

randomness of EVs charging load, the data plotted are mean values of all repetitions of each 

transformer.  

 

Figure 3.11: Peak hot-spot temperatures and bubbling inception temperatures under three EV scenarios     

0 10 20 30 40 50 60
0

50

100

150

200

250

Transformer age (year)

T
e

m
p

e
ra

tu
re

 (
°C

)

 

 

Hot-spot temperature peak (BAU scenario)

Hot-spot temperature peak (High-range scenario)

Hot-spot temperature peak (Extreme-range scenario)

Bubbling inception temperature 



 

52 

 

Bubbling inception temperatures are decreasing with the transformer age due to the 

accumulation of moisture in paper. For young transformers, the bubbling inception temperature 

is around 120°C, while for transformers over 50 years old, it can be lower than 100°C. In 

addition, similar to the moisture in paper, a deviation between indoor and outdoor transformers 

is observed, which are increasing with the transformer age, and could be over 7 °C lower for 

outdoor transformers when the age goes beyond 50 years. However, considering that indoor 

transformers could have higher temperature rises due to the enclosure, which would trade off 

the effects of lower bubbling inception temperatures in terms of the bubbling formation, it is 

still unclarified to claim how the potential failure probability would be influenced by the 

installation condition of distribution transformers.    

The failure occurs when the peak hot-spot temperature exceeds the bubbling inception 

temperature. The failure probability is calculated for each distribution transformer as the ratio 

of number of simulations that failure occurs to the total number of repetitions during the Monte-

Carlo simulations under three EV scenarios. Results are shown in Figure 3.12.    

 

Figure 3.12: Failure probability under three EV scenarios 

Under BAU scenario, when no EVs are implemented, no transformers are exposed to the risk 

of failure. Failures start in the High-range EV scenario, where 32% of customers are owning 

and charging EVs. If it is defined as “high risk” when a transformer is facing a failure 

probability of over 50%, then the number of transformers in high risk under each EV scenario 

is presented in Table 3-8. 
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Table 3-8: Number of transformers with failure probability over 50%   

EV scenarios BAU scenario 
High-range 

scenario 

Extreme-range 

scenario 

Indoor/outdoor installation Indoor Outdoor Indoor Outdoor Indoor Outdoor 

Age group 

0 – 20 years 0 0 2 4 6 7 

20 – 40 years 0 0 4 5 7 12 

40 – 60 years 0 0 6 1 15 6 

Total 0 0 11 10 28 25 

Under High-range EV scenario, only 21 out of 150 transformers are in high risk, which is 14%. 

While under Extreme-range EV scenario, where the EVs penetration level increases to 58.9%, 

53 transformers are facing high risks, which are 35.4% of the demonstration group. 

In terms of age, according to Table 3-8, for indoor transformers, older transformers tend to 

have more high risk ones. However for outdoor transformers, the oldest group, i.e. age 40 to 

60, has fewest high risk transformers. Therefore, solely based on results in Table 3-8, it may 

not be able to claim a clear relationship between failure probability and transformer age.     

Another factor impacting the transformer failure probability is the peak load, which is 

investigated in Figure 3.13, where the peak loads of high risk and low risk transformers under 

Extreme-range EV scenario are compared.  

 

Figure 3.13: Comparison of peak loads between high risk transformers and low risk transformers under Extreme-

range scenario 

A boundary line as shown in Figure 3.13 can be explicitly identified to distinguish individuals 

with high or low risks, above which the transformer is in high risk, and otherwise it is in low 

risk. Therefore, the peak load can be identified as the dominant factor of the failure probability 

of a distribution transformer under EV scenarios. Furthermore, based on the comparison, it is 

possible to define an empirical threshold value of the peak load so that the EVs penetration 
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level can be controlled to assure a lower peak load and to guarantee the transformer to operate 

in low risk regime. In this demonstration, the threshold value of the peak load can be roughly 

found as 1.5 p.u. 

Apart from the age and peak load, the last possible factor affecting the failure probability is 

installation location, i.e. indoor / outdoor installation. According to Table 3-8, more indoor 

transformers are observed as high risk. However, there are more indoor transformers in the 

selected group of transformers. In terms of percentage, under High-range scenario, 13.8% (11 

out of 80) indoor transformers are in high risk; and 14.3% (10 out of 70) outdoor transformers 

are in high risk. Under Extreme-range scenario, percentages get even closer for indoor / outdoor 

transformers. The percentage is 35% (28 out of 80) for indoor transformers, and 35.7% (25 out 

of 70) for outdoor transformers. As a result, it is difficult to claim if transformer enclosure is 

an essential factor causing higher failure probabilities.   

In summary, investigations of failure probabilities of the demonstrative transformers under EV 

scenarios show that no failure risks are faced under BAU scenario. Under High-range scenario, 

around 14% of investigated distribution transformers will be in high risk; and this percentage 

will increase to 35.4% under Extreme-range scenario. The failure probability is affected by 

three factors including transformer age, peak load and installation condition. The peak load is 

found as the dominant factor. Under Extreme-range scenario, a threshold value of around 1.5 

p.u. of the peak load is found, above which distribution transformers in high risk are 

distinguished. 

3.5 Summary   

The assessment strategy is applied on a group of demonstrative distribution transformers 

randomly selected from the population. In case of the unavailability of load and ambient 

profiles, modelling approaches are introduced to estimate the load and ambient profiles for the 

calculation of hot-spot temperature.   

Results show that EVs charging would be less concerned on the acceleration of thermal ageing 

and the reduction of transformer lifetime than failure caused by bubbling, since the peak load 

and hot-spot temperature will be compensated by the low values during the off-peak time and 

eventually lead to a moderate ageing even under the high EVs penetration such as Extreme-

range scenario.   
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In terms of short time risks, firstly, no transformers are facing failure risks due to bubbling 

under current conditions (BAU scenario). Around 14% of demonstrative transformers are 

observed as high risk transformers, which have a failure probability over 50%, under High-

range EV scenario. The percentage increases to 35.4% when it turns to Extreme-range scenario. 

Although older transformers tend to have higher failure probabilities, it is found that the failure 

probability is dominantly controlled by the peak load, other factors such as transformer age and 

installation conditions are relatively less influential. An empirical threshold value of around 

1.5 p.u. peak load is observed under Extreme-range scenario, above which the transformer 

would be in high risk with a failure probability over 50%, otherwise it would be in low risk.  
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4.  Conclusions 

A systematic assessment strategy for the future adaptability of distribution transformers under 

EV scenarios is introduced. With the assessment strategy, risks of operating distribution 

transformers into future EV scenarios are assessed by various quantified indicators including 

the load, hot-spot temperature, loss-of-life, expected lifetime and failure probability. With these 

indicators, asset management strategy of the distribution transformer population could be 

developed accordingly. For example, EVs penetration level should be controlled for 

transformers with high failure probability; otherwise these transformers should be closely 

monitored or replaced to avoid failure and disconnection of their downstream customers. The 

required input data for the strategy are simple and generally accessible, which include IEC 

thermal model parameters, transformer information such as age, power rating, installation 

condition and customer information, transformer operation information such as ambient 

temperature and the interested EVs penetration levels. In case of unavailability of some 

required input data, alternative modelling approaches have been introduced for approximate 

estimation. Therefore, with the proposed assessment strategy, a tool in Matlab is developed for 

ENW to assess their distribution transformers under anticipated EVs penetration level of 

interest.  

In addition, main contributions and findings of this work are summarised below.   

4.1 Main contributions 

Main contributions of this work are summarised as follows:  

 Introducing and demonstrating an assessment strategy for the adaptability of 

distribution transformer population under EV scenarios 

 Proposing and verifying two methods of refining IEC thermal model parameters for 

distribution transformers  

 Modelling of EVs charging load in a probabilistic manner with realistic data collected 

by EVs trials in UK 

 Defining and modelling the short term failure probability of distribution transformers 

under EV scenarios  

 Modelling of moisture in paper using equilibrium curves of moisture dynamics between 

oil and paper in distribution transformers  
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4.2 Main findings  

Main findings of this work are summarised as follows:  

 Refinement of IEC thermal model parameters 

Curve-fitting hot-spot and top-oil temperatures measured during the extended heat run test is 

introduced and verified in this work as the ideal approach to refine the IEC thermal model 

parameters for distribution transformers. In order to obtain the most accurate values for thermal 

parameters, curve-fitting should be applied on the hot-spot temperatures measured during the 

entire duration of the extended heat run test including the cooling intervals between each two 

consecutive tests. Otherwise less accurate thermal parameters would be resulted, and the 

accuracy of the prediction of hot-spot temperature can be deteriorated. However, in the 

standard heat run test procedure [41], temperature measurements during the cooling periods 

are not mentioned and discussed. Therefore, it is recommended that temperature measurements 

of cooling periods during a heat run test should be at least discussed and provided as an option 

in the standard procedure.  

 Applying the assessment strategy on a selected group of transformers under three EV 

scenarios  

The assessment strategy is demonstrated on a group of 150 distribution transformers randomly 

selected from the population by controlling the transformer age. Three EV scenarios, i.e. BAU, 

High-range and Extreme-range scenarios, are investigated, which represent no EVs penetration, 

32% penetration and 58.9% penetration respectively.  

When EVs are plugged in, the peak load is increased significantly while the yearly RMS load 

is much less affected. Depending on the penetration level, the peak load can be doubled or 

tripled. However, as to the yearly RMS load, since the huge peak load is compensated by the 

low valley load values during a day, the increased of RMS load caused by EVs charging load 

is relatively less than the peak load. For 150 demonstrated distribution transformers, the peak 

load increases by 77% and 146% in average under High-range and Extreme-range EV scenarios 

respectively; and as a comparison, the yearly RMS load only increases by 16% and 33%. 

Similar to the load, when EVs charging occurs, the peak value of the hot-spot temperature is 

drastically lifted while the yearly average value is only moderately increased. For 150 

demonstrated distribution transformers, the peak hot-spot temperature increases by 47% and 
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100% in average under High-range and Extreme-range scenarios respectively; and as a 

comparison, the yearly average value only increases by 6% and 13%. Results show that even 

the peak hot-spot temperature goes up to 230°C under Extreme-range scenario, the yearly 

average value is only 72°C. 

Effects of the increased hot-spot temperatures on the thermal ageing are limited by the duration 

of the EVs charging. Results show that despite of the high hot-spot temperatures during the 

peak time (when EVs charging occurs), the yearly loss-of-life is very much compensated by 

the off-peak time. Thermal ageing of most transformers are not accelerated over an assumed 

constantly rated loaded transformer under High-range or Extreme-range scenarios. Under 

High-range scenario, only 8 out of 150 transformers (5.3%) have a yearly loss-of-life over the 

rated value. Under Extreme-range scenario, the number is 27 out of 150 transformers (18%). 

In addition, all the over-aged transformers possess peak loads higher than 1.8 p.u. and peak 

hot-spot temperatures over 130 °C. Under such high values of load and hot-spot temperature, 

the top concern would be the short term failure instead of long term thermal ageing. Therefore, 

it might be concluded that EVs charging would be less concerned on the acceleration of thermal 

ageing and the reduction of transformer lifetime than direct failure due to bubbling, since the 

peak load and hot-spot temperature will be compensated by the low values during the off-peak 

time and eventually lead to a moderate ageing even under the high EVs penetration such as 

Extreme-range scenario.  

Short term failure is defined as transformer breakdown due to bubbling. By comparing the peak 

hot-spot temperatures and the bubbling inception temperatures through Monte-Carlo 

simulations under EV scenarios, it is found that no transformer is facing any failure hazards 

under BAU scenario due to the low load and hot-spot temperature. Under High-range scenario, 

failure starts to occur. If transformers with a failure probability over 50% are considered as 

high risk, then 14% of transformers are in high risk under High-range scenario, while 35.4% 

of transformers are in high risk under Extreme-range scenario. Several factors are investigated 

in terms of theirs impacts on the failure probability such as transformer age, installation 

condition and load. Age is affecting the failure probability through moisture in oil. The older 

the transformer is, the more the moisture in oil accumulates and the lower the bubbling 

inception temperature tends to be. Results show that the bubbling inception temperature ranges 

from 120.4 °C of a 1 year old transformer to 89.9 °C of a 58 years old transformer. However, 
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by comparing the number of transformers in high risk of various age groups, no definite 

relationship is observed between transformer age and failure probability.   

In terms of the installation condition, similar percentages of indoor / outdoor transformers are 

observed as high risk under High-range and Extreme-range scenario. Therefore, it is difficult 

to claim outdoor installation is an essential factor causing higher failure probabilities.  

The peak load is found as the most significant factor affecting the failure probability. Take the 

Extreme-range scenario as an example, an explicit threshold value in peak load can be 

identified that distinguishes distribution transformers in high risk (failure probability over 50%) 

from others regardless of age and installation condition, and the value is around 1.5 p.u. 

Therefore, the peak load can be identified as the dominant factor of the failure probability of 

distribution transformers under EV scenarios. 
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Appendix: Thermal parameters derived by heat run test data of 20 
distribution transformers representing population 

 

Index 

Power 

rating 

(kVA) 

Voltage 

rating 

(kV) 

R 
or  

(K) 

rg  

(K) 
H* 

o * 

(min) 

w  

(min) 
x* y* 11k  *

21k  *
22k  

1 315 6.27 8.76 45.1 14.3 1.1 180 13.0 0.8 1.6 1.12 1 2 

2 500 10.45 8.56 47.5 8.5 1.1 180 14.0 0.8 1.6 1.16 1 2 

3 1000 10.45 9.03 56.5 14.8 1.1 180 15.0 0.8 1.6 1.17 1 2 

4 315 6.6 8.25 49.1 20.3 1.1 180 10.4 0.8 1.6 1.11 1 2 

5 500 6.6 8.55 49.2 17.4 1.1 180 9.1 0.8 1.6 1.14 1 2 

6 1000 6.6 8.55 48.5 22.8 1.1 180 6.8 0.8 1.6 1.16 1 2 

7 315 6.6 8.20 49.8 20.8 1.1 180 10.3 0.8 1.6 1.15 1 2 

8 1000 6.6 8.69 50.9 13.4 1.1 180 11.2 0.8 1.6 1.13 1 2 

9 315 11 8.79 49.6 19.5 1.1 180 9.4 0.8 1.6 1.12 1 2 

10 500 11 8.24 48.6 20.5 1.1 180 9.9 0.8 1.6 1.15 1 2 

11 315 11 8.85 50.2 19.4 1.1 180 8.4 0.8 1.6 1.18 1 2 

12 1000 11 9.07 50.3 18 1.1 180 8.7 0.8 1.6 1.13 1 2 

13 315 6.6 8.52 50.4 10.6 1.1 180 5.6 0.8 1.6 0.97 1 2 

14 1000 11 9.22 51.8 11 1.1 180 16.0 0.8 1.6 1.05 1 2 

15 800 6.6 9.00 52 17 1.1 180 9.4 0.8 1.6 1.09 1 2 

16 800 11 9.21 49.5 21.9 1.1 180 12.5 0.8 1.6 1.20 1 2 

17 500 6.6 8.24 53.6 13.8 1.1 180 11.5 0.8 1.6 1.11 1 2 

18 315 11 8.63 52.7 13.5 1.1 180 10.4 0.8 1.6 1.11 1 2 

19 1000 6.6 9.40 54.7 14.5 1.1 180 28.6 0.8 1.6 1.11 1 2 

20 500 11 8.49 52.3 24.4 1.1 180 8.2 0.8 1.6 1.31 1 2 
*: Generic values recommended in IEC loading guide are applied, since required data for the derivation are not available. 

 

 


